## SOAR - Stereo Obstacle Avoidance Rig, Phase I





Completed Technology Project (2014 - 2014)

## **Project Introduction**

The ultimate goal of the SOAR program is to develop robust hardware and algorithms for low light, passive terrain sensing. The SOAR system will provide NASA with a solution for real-time obstacle avoidance for large and small unmanned air platforms. During Phase-I, we will collect images with all of the leading low-light camera technologies. The image data will be used to derive, test, and enhance a passive terrain sensing algorithm based-on state-of-the-art, visual odometry and dense stereo algorithms. At the end of Phase-I, we will recommend the optimal hardware, algorithm, and computing platform for full prototype development during Phase-II. The factors used to make the recommendation include cost, range accuracy, size, power consumption, algorithm execution time, etc.

### **Primary U.S. Work Locations and Key Partners**



| Organizations<br>Performing Work | Role         | Туре     | Location   |
|----------------------------------|--------------|----------|------------|
| Opto-Knowledge                   | Lead         | Industry | Torrance,  |
| Systems, Inc.(OKSI)              | Organization |          | California |
| Langley Research Center(LaRC)    | Supporting   | NASA     | Hampton,   |
|                                  | Organization | Center   | Virginia   |



SOAR - Stereo Obstacle Avoidance Rig Project Image

### **Table of Contents**

| Project Introduction          |   |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           |   |
| Images                        | 2 |
| Organizational Responsibility |   |
| Project Management            |   |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              |   |
| Target Destinations           |   |



#### Small Business Innovation Research/Small Business Tech Transfer

## SOAR - Stereo Obstacle Avoidance Rig, Phase I





Completed Technology Project (2014 - 2014)

| Primary U.S. Work Locations |          |  |
|-----------------------------|----------|--|
| California                  | Virginia |  |

### **Project Transitions**

June 2014: Project Start



December 2014: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/140498)

#### **Images**



#### **Project Image**

SOAR - Stereo Obstacle Avoidance Rig Project Image (https://techport.nasa.gov/imag e/133892)

# Organizational Responsibility

#### **Responsible Mission Directorate:**

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Opto-Knowledge Systems, Inc. (OKSI)

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

## **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Scott Foes

# **Technology Maturity** (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# SOAR - Stereo Obstacle Avoidance Rig, Phase I





## **Technology Areas**

#### **Primary:**

- TX11 Software, Modeling, Simulation, and Information Processing
  - └ TX11.2 Modeling
    - □ TX11.2.2 Integrated Hardware and Software Modeling

# **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

